for some N. The only difficulty in the proof of these statements, beyond the methods already used in §§1–4, is the possibility that surfaces in $\mathfrak P$ may have boundary values which are constant on some arcs of the circumference.

Statement (1) yields a modified Morse theory; the usual requirement is that every k-cap contain a minimal surface \mathfrak{z} for which $D[\mathfrak{z}] = a$. But by assigning type numbers to *blocs* of minimal surfaces, the usual Morse relations hold.

- ¹ [1] Shiffman, "The Plateau Problem for Non-Relative Minima," Ann. Math., 40, 834-854 (1940); [2] Morse and Tompkins, "The Existence of Minimal Surfaces of General Critical Type," Ibid., 40, 443-472 (1940); [3] Courant, "Critical Points and Unstable Minimal Surfaces," these Proceedings, 27, 51-57 (1941); [4] Morse and Tompkins, "Minimal Surfaces Not of Minimum Type by a New Mode of Approximation," Ann. Math., 42, 62-72 (1941); and "The Continuity of the Area of Harmonic Surfaces as a Function of the Boundary Representations," Am. Jour. Math., 63, 825-838 (1941).
 - ² Cf. [3].
 - 3 Cf. [4].
 - ⁴ See Radò, "On the Problem of Plateau," Ergeb. Math., 2, 45-47 (1933).
- ⁵ The uniformity of the convergence may be eliminated since it is a consequence of $L^{n}(1) \to L^{\infty}(1)$.
- ⁶ Cf. Shiffman, "The Plateau Problem for Minimal Surfaces Which Are Relative Minima," Ann. Math., 39, 311-312 (1938).
 - ⁷ This theorem is capable of very wide generalizations.
 - * In \$\mathbb{B}\$ this metric is equivalent to the uniform metric.
 - \mathfrak{P}_a consists of those surfaces \mathfrak{x} of \mathfrak{P} for which $D[\mathfrak{x}] \leq a$.

ON HOMOGENEOUS MEASURE ALGEBRAS

By Dorothy Maharam

THE INSTITUTE FOR ADVANCED STUDY

Communicated January 26, 1942

- 1. The purpose of this note is to determine the structure of general measure algebras.
- 2. For any Boolean σ -algebra M, let \overline{M} be the least cardinal number which is the power of a σ -basis of M. M is homogeneous, if $\overline{L} = \overline{M}$ for every (principal) ideal $L \subseteq M$ different from the null ideal. A Boolean σ -algebra $M = \{0 \le a, b, c, \ldots \le e\}$ is a measure algebra, if there is defined on M a measure function (that is, a countably additive real non-negative function) $\mu(a)$ such that (i) $0 < \mu(e) < \infty$, (ii) $\mu(a) = 0$ if and only if a = 0. We also assume that there is no atomic element in M, i.e., (iii) a > 0 implies the existence of a $b \in M$ such that 0 < b < a

An example of a homogeneous measure algebra is the Boolean algebra $P(\gamma)$ of all measurable sets (mod. null sets) of an infinite product space $\Omega_{\gamma} = P_{0 \le \alpha < \gamma} I_{\alpha}$ of intervals I_{α} : $0 \le x_{\alpha} \le 1$, where α and γ are ordinal numbers and the measure on Ω_{γ} is defined multiplicatively in terms of the ordinary Lebesgue measure on each I_{α} .

If $\gamma < \gamma'$, then $P(\gamma)$ may be considered as a σ -subalgebra of $P(\gamma')$. This embedding is obtained by identifying each subset E of Ω_{γ} with the cylinder set $E \times P_{\gamma \leq \alpha < \gamma'}I_{\alpha}$ in the product space $\Omega_{\gamma'} = \Omega_{\gamma} \times P_{\gamma \leq \alpha < \gamma'}I_{\alpha}$.

Two measure algebras are isomorphic, if there exists a measure-preserving σ -isomorphism between them. It is easy to see that, for any infinite ordinals γ and γ' , two measure algebras $P(\gamma)$ and $P(\gamma')$ are isomorphic if and only if γ and γ' correspond to the same cardinal. Moreover, if γ is finite or corresponds to \aleph_0 , then $P(\gamma)$ is isomorphic to P(1), i.e., to the measure algebra of Lebesgue measurable sets (mod. null sets) of the interval $1: 0 \leq x \leq 1$.

THEOREM 1. Every homogeneous measure algebra with $\mu(e) = 1$ is isomorphic to $P(\gamma_0)$, where γ_0 is the least ordinal number corresponding to M.

This theorem will be proved by transfinite induction. It will be sufficient to prove the following

LEMMA 1: Let L be a σ -subalgebra of a homogeneous measure algebra M with $\mu(e)=1$ such that $\overline{L}<\overline{M}$, and assume that L is isomorphic to $P(\gamma)$, where γ is an ordinal corresponding to \overline{L} . Then, for any $a\in M$ with $a\in L$, there exists a σ -subalgebra L' of M such that $L\subset L'$, $a\in L'$, and L' is isomorphic to $P(\gamma+1)$, in such a way that this isomorphism is an extension of the given isomorphism of L and $P(\gamma)$.

The proof of this lemma will be given in section 4.

3. Let us assume the conditions of Lemma 1. We can consider Ω_{γ} as a representation space of $L=P(\gamma)$. Then, by a theorem of Radon-Nikodym, there exists, for any $a \in M$, a measurable function $\varphi_a(\xi)$ defined on Ω_{γ} such that $0 \leq \varphi_a(\xi) \leq 1$, and $\int_{E_x} \varphi_a(\xi) d\xi = \mu(a \wedge x)$ for any $x \in L$, where E_x is a measurable set of Ω_{γ} which corresponds to $x \in L$. An element $a \in M$ is called *independent* of L, if we have $\varphi_a(\xi) = \text{constant [namely, } = \mu(a)]$ almost everywhere (a. e.) on Ω_{γ} . This is equivalent to saying that we have $\mu(a \wedge x) = \mu(a) \cdot \mu(x)$ for all $x \in L$.

LEMMA 2: For any measurable function $\chi(\xi)$ defined on Ω_{γ} with $0 \le \chi(\xi)$ $\le \varphi_a(\xi)$ a. e. on Ω_{γ} , there exists a $b \in M$ such that $0 \le b \le a$ and $\varphi_b(\xi) = \chi(\xi)$ a. e. on Ω_{γ} .

Proof of Lemma 2.—Our lemma is clear if $\chi(\xi) = 0$ a. e. on Ω_{γ} . Hence we may assume that meas $[\xi:\chi(\xi)>0]>0$. Because of the principle of exhaustion, it is sufficient to show that there exists a $b^* \in M$ such that $0 < b^* \le a$ and $\varphi_{b^*}(\xi) \le \chi(\xi)$ a. e. on Ω_{γ} .

Let A be the principal ideal generated by a and let L(a) be the σ -subalgebra of M generated by L and a. Since $\overline{L(a)} = \overline{L} < \overline{A} = \overline{M}$ by assumption,

there exists a $b_1 \in M$ such that $b_1 \in A$ and $b_1 \in L(a)$. This means that meas $[\xi:0<\varphi_{b_1}(\xi)<\varphi_a(\xi)]>0$. Again, by the principle of exhaustion, we can further find a $b_2 \in M$ such that $0< b_2 < a$ and $0<\varphi_{b_2}(\xi)<\varphi_a(\xi)$ a. e. on the set $[\xi:\varphi_a(\xi)>0]$. Let us denote by c_1 and c_2 the elements of L which correspond to the sets $[\xi:0<\varphi_{b_2}(\xi)\le 2^{-1}\varphi_a(\xi)]$ and $[\xi:2^{-1}\varphi_a(\xi)<\varphi_{b_2}(\xi)<\varphi_a(\xi)]$. If we now put $b_3=(c_1\wedge b_2)\vee(c_2\wedge (a-b_2))$, then $0< b_3 < a$ and we have $0<\varphi_{b_3}(\xi)\le 2^{-1}\varphi_a(\xi)$ a. e. on the set $[\xi:\varphi_a(\xi)>0]$. By iterating this argument, we can find, for each n, a $b_{n+2}\in M$ such that $0< b_{n+2}<a$ and $0<\varphi_{b_{n+2}}(\xi)\le 2^{-n}\varphi_a(\xi)$ a. e. on the set $[\xi:\varphi_a(\xi)>0]$. Take n so large that meas $E^*>0$, where $E^*=[\xi:2^{-n}\varphi_a(\xi)\le \chi(\xi)]$, and denote by c^* the element of L which corresponds to E^* . If we put $b^*=c^*\wedge b_{n+2}$, then we have $0< b^*< a$, and $\varphi_{b^*}(\xi)=\varphi_{b_{n+2}}(\xi)\le 2^{-n}\varphi_a(\xi)\le \chi(\xi)$ a. e. on E^* , and $\varphi_{b^*}(\xi)=0$ a. e. on $\Omega_\gamma-E^*$. Hence $\varphi_{b^*}(\xi)\le \chi(\xi)$ a. e. on Ω_γ and this proves Lemma 2.

4. Proof of Lemma 1. Let Δ_n be the set of all finite sequences $\delta = \{\epsilon_1, \ldots, \epsilon_n\}$, where $\epsilon_i = 0$ or 1, $i = 1, \ldots, n$; and let $\Delta = \bigcup_{n=1}^{\infty} \Delta_n$. A countable set $\{a_{\delta}\}$ ($\delta \in \Delta$) is a dyadic decomposition of a if $a_0 \vee a_1 = a$, $a_0 \wedge a_1 = 0$, and $a_{\delta,0} \vee a_{\delta,1} = a_{\delta}, a_{\delta,0} \wedge a_{\delta,1} = 0$ for all $\delta \in \Delta$. By Lemma 2, there exists for any $a \in M$, a dyadic decomposition $\{a_{\delta}\}(\delta \in \Delta)$ of a such that $\varphi_{a_{\delta}}(\xi) = \min(\varphi_a(\xi), \epsilon_1/2 + \ldots + \epsilon_n/2^n + 1/2^n) - \min(\varphi_a(\xi), \epsilon_1/2 + \ldots + \epsilon_n/2^n)$ a. e. on Ω_{γ} for all $\delta = \{\epsilon_1, \ldots, \epsilon_n\} \in \Delta$. In the same way, there exists a dyadic decomposition $\{a'_{\delta}\}(\delta \in \Delta)$ of a' = e - a such that $\varphi_{a'_{\delta}}(\xi) = \max(\varphi_a(\xi), \epsilon_1/2 + \ldots + \epsilon_n/2^n + 1/2^n) - \max(\varphi_a(\xi), \epsilon_1/2 + \ldots + \epsilon_n/2^n)$ a. e. on Ω_{δ} for all $\delta = \{\epsilon_1, \ldots, \epsilon_n\} \in \Delta$. Let us put $b_{\delta} = a_{\delta} \vee a'_{\delta}$ for all $\delta \in \Delta$. Then $\{b_{\delta}\}(\delta \in \Delta)$ is a dyadic decomposition of the unit element e, and each e is independent of e, since we have clearly $\varphi_{b_{\delta}}(\xi) = \varphi_{a_{\delta}}(\xi) + \varphi_{a'_{\delta}}(\xi) \equiv 1/2^n$ a. e. on Ω for all $\delta \in \Delta_n$, $n = 1, 2, \ldots$

Now let L' be the σ -subalgebra of M generated by L and $\{b_{\delta}\}(\delta \epsilon \ \Delta)$. L' is obtained by completing the finite algebra L^* consisting of all elements of M of the form: $b^{(n)} = \bigvee_{\delta \in \Delta_n} (b_{\delta} \land c_{\delta})$, where $c_{\delta} \epsilon L$ for all $\delta \epsilon \Delta_n$, n = 1, 2... It is easy to see that L' is isomorphic to $P(\gamma + 1)$ by an isomorphism which is an extension of the given isomorphism of L and $P(\gamma)$.

Finally, in order to prove that $a \in L'$, consider the set $[\xi: \varphi_a(\xi)] \ge \epsilon_1/2 + \ldots + \epsilon_n/2^n + 1/2^n]$ for each $\delta = \{\epsilon_1, \ldots, \epsilon_n\} \epsilon \Delta$, and let c_δ be the corresponding element of L. If we put $b^{(n)} = \bigvee_{\delta \in \Delta_n} (b_\delta \wedge c_\delta)$, then we have $b^{(1)} \le b^{(2)} \le \ldots \le b^{(n)} \le \ldots \le a$ and $\mu(a - b^{(n)}) \le 1/2^n$ for $n = 1, 2, \ldots$ Hence we have $a = \bigvee_{n=1}^{\infty} b^{(n)}$ and consequently $a \in L'$. This proves Lemma 1 and so Theorem 1.

5. A measure algebra M is a *direct sum* of (a finite or countably infinite number of) measure algebras M_n , if each M_n is (isomorphic to) a principal ideal of M and if every element $a \in M$ is uniquely expressed in the form:

 $a = \bigvee_{n=1}^{\infty} a_n$, $a_m \wedge a_n = 0 (m \neq n)$, where $a_n \in M_n$, $n = 1, 2, \ldots$ (This last condition is equivalent to saying that the unit elements e_n of M_n , which are elements of M, satisfy $e_m \wedge e_n = 0 \ (m \neq n)$ and $e = \bigvee_{n=1}^{\infty} e_n$.)

THEOREM 2. Every measure algebra is a direct sum of homogeneous measure algebras $M_n(n = 1, 2, ..., finite or countably infinite)$.

The proof of Theorem 2 is easy and will be omitted.

Theorems 1 and 2 indicate the structure of a general measure algebra.

- 6. The ergodicity of a measure preserving σ -automorphism T of a measure algebra M (onto itself), or that of a group $G = \{T\}$ of such σ -automorphisms, can be defined as usual.
- Lemma 3. In order that the group of all measure preserving σ -automorphisms of a measure algebra M be ergodic on M, it is necessary and sufficient that M be homogeneous.

The proof of this lemma is easy and is omitted.

THEOREM 3. Let M be a measure algebra, and let G be the group of all measure preserving σ -automorphisms of M. Then M is a direct sum of a countable number of invariant principal ideals M_n , on each of which G is ergodic. This decomposition is the same as in Theorem 2.

Let G be an arbitrary group of measure preserving σ -automorphisms of M. Then the set L_G of all $a \in M$ such that T(a) = a for all $T \in G$, is a σ -subalgebra of M. Conversely, for any σ -subalgebra $L \subseteq M$, consider the set G_L of all measure preserving σ -automorphisms T of M such that T(a) = a for all $a \in L$. G_L is clearly a group. It is also clear that $L \subseteq L_{G_L}$ and $G \subseteq G_{L_G}$. Exactly as in the theory of Galois, we may ask the question: Under what conditions do the equalities $L = L_{G_L}$ and $G = G_{L_G}$ hold? These and related problems will be discussed elsewhere.

I am greatly indebted to Shizuo Kakutani, who revised and improved my original manuscript.